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THEORY OF THE TWO-SUBLATTICE HEISENBERG ANTIFERROMAGNET
by Edwin G. Wintucky and Larry Flax

Lewis Research Center

SUMMARY

Thermodynamic properties of the two-sublattice anisotropic Heisenberg antiferro-
magnet are calculated by the Green function method in the random-phase (Tyablikov) and
Callen approximations for spin 1/2. Analytic expressions for the sublattice magneti-
zation and internal energy are obtained which are valid over the whole temperature range
up to the Néel temperature for the body-centered cubic lattice.

INTRODUCTION

Antiferromagnetism, like ferromagnetism, is a cooperative phenomenon with an
ordered state below a well-defined critical temperature. For the antiferromagnet, how-
ever, the exchange energy is negative, and neighboring spins tend to aline antiparallel.

The simplest and most often used model for the antiferromagnet is the two-sublattice
model wherein the lattice of magnetic atoms is subdivided into two equivalent interpene-
trating sublattices. If only nearest-neighbor interactions are considered, the spins on
one sublattice interact only with the nearest spins on the adjacent sublattice. A negative
exchange interaction energy results in the two sublattices being spontaneously magnetized
in opposite directions. This is the model originally proposed by Néel and has been much
used in subsequent theoretical studies of the antiferromagnet. At absolute zero the spins
on each sublattice are completely alined antiparallel, and with increasing temperature
the spontaneous magnetitization of each sublattice decreases and finally disappears, in
zero applied field, at a critical temperature called the Neel temperature. Because of
the equivalence of the two sublattices, the net magnetization is zero. The two-sublattice
model, which is considered in this report, is compatible only with simple cubic and
body -centered cubic crystal structures. More complicated models must be used for
antiferromagnetic materials with the face-centered cubic or other crystal structures.
Further discussion of the two-sublattice and other models, as well as the experimental



properties of antiferromagnets, can be found in the books on magnetism by Morrish
(ref. 1) and Smart (ref. 2).

The theory of antiferromagnetism has been much investigated in recent years. The
Green function technique is now well established as one of the most useful statistical
methods in the theory of magnetism and has been applied many times already to the study
of antiferromagnetism (ref. 3 and references cited therein). FEarlier methods, espe-
cially the molecular field theory, are discussed in detail in references 1 and 2. A use-
ful feature of the Green function method is its applicability over the whole temperature
range. Calculations of thermodynamic properties using Green functions have been found
to be in good agreement with the results of noninteracting spin wave approximations at
low temperatures and with the results of other statistical methods near the Néel tem-
perature (ref. 3).

In this report the Green function technique is applied to the anisotropic Heisenberg
exchange model of a two-sublattice antiferromagnet to obtain the correlations between
spins, from which the thermodynamic properties can be calculated.

The Heisenberg model is considered reasonably valid for insulators and semicon-
ductors. The sublattice magnetization and other thermodynamic quantities involve com-
plicated lattice sums which, generally, have been evaluated by means of series expan-
sions at the high- and low-temperature limits. In a few cases numerical calculations
have been made at a limited number of intermediate points (ref. 3). Flax and Raich
have developed a method for evaluating the lattice sums and successfully applied it to the
ferromagnet to obtain analytic expressions for the spontaneous magnetization valid over
the whole temperature range (refs. 4 to 6). In this report, their method is applied to
the antiferromagnet with spin 1/2 to obtain analytic expressions for the sublattice mag-
netization and internal energy for the body-~-centered cubic (bec) structure. The calcula-
tions are made for two Green function decoupling schemes, the random-phase approxi-
mation (RPA), which is the Tyablikov approximation, (ref. 7), and the Callen approxi-
mation. The random-phase approximation is justifiable at low temperatures, where the
spins are nearly completely alined and fluctuations are indeed small. However, near the
critical point, fluctuations in S?% become significant, and the RPA gives an overestimate
of the transition temperature. The Callen approximation takes these fluctuations into
account and, for spin greater than 1/2, gives better results near the critical point. The
Néel temperatures are also calculated and compared with previous results.

GREEN FUNCTION METHOD

As stated previously, the model used in the present study is a cubic, two-sublattice
anisotropic Heisenberg antiferromagnet with nearest-neighbor interactions. The
Hamiltonian is

2



H= E E Jozl, 3m|iszlsfz3m 2 (S:;zl ém + Sozl Bmﬂ (1)

a’ﬁ Z’m

where J al, pm is the exchange energy, s? and S* are spin operators, and ol and
pm refer to lattice sites  and m in sublattices o and B, respectively. Here
o,B=1,2 with N/2 sites in each sublattice; 1 is an anisotropy factor where 7 =0
corresponds to the Ising model and 7 =1 to the isotropic Heisenberg model. In the
Green function method, the sublattice magnetization <S‘z’> and internal energy (H) are
calculated from correlation functions involving pairs of spin operators, for example,
(S st ol > For a general description of the double-time temperature dependent Green
funct1on method, see Zubarev (ref. 8 and references cited therein). (Symbols are de-
fined in appendix A.)

The equation of motion in the energy (E) representation for the Green function

<<SZZ;SE3m>> is
505 55m)) ==t Siml) + ([l 1 S @

The commutators for spin operators
(S50 Shm) = 755 8a gt
and
[SZZ’SE;m] 252, 6,50 m (3)

where 601 8 and 5, m are Kronecker deltas, are used to evaluate [S';l , H] The equa-

tion of motion is then
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Equation (4) represents an infinite hierarchy of coupled equations since each Green
function on the right side is of higher order and satisfies a similar equation of motion.
To solve this system of coupled equations some decoupling approximation must be made
to limit the number of equations. We treat the two decoupling schemes most commonly
used in the theory of ferro- and antiferromagnetism, the random-phase and Callen ap-
proximations.

Decoupling the equations of motion enables one to solve for the Green function in
terms of the energy and excitation energy spectrum. The corresponding correlation
functions are related to the Green functions by the following equation:

o0

lim e'iE(t't')
(B(tYA®M) = 1M ((A;B)) - ((A; BY) ] e aE (5)
-0 - E+ie E-iej BE _4

where A and B are the appropriate spin operators, t and t' are times, g = 1/kT,

k is Boltzmann's constant, and T is absolute temperature. Thermodynamic quantities
of interest, for example, sublattice magnetization and internal energy, are obtained
from these correlation functions.

SUBLATTICE MAGNETIZATION
Random-Phase Approximation

In the RPA, the fluctuations in s? are ignored and the operator is replaced by its
average value. Then

<Szgszl" Bm» pg#pm ing> «SZZ"SE;m» (6)
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The equation of motion becomes

_1 /2 _ z
BAo1, gm = Sal> 0% m - 2 E E ot e <<sug> Ayt m
Log |

-1 <Szl> Aug, Bm) @
where

Aal,pm = <<Sgl" Sém>> (8)

Assuming translational invariance of the direct lattice, we Fourier transform to the re-

ciprocal lattice. Let

z : - ik-(R_,-R,)
2 l m
Aal ,pm -IE AaB(k)e * g ©)
k
z : _ k@R _,-R )
2 l g
k

where k is a vector in the reciprocal lattice, and Ral is a vector in the direct lattice
for lattice site ! in sublattice @. Furthermore, we make the nearest-neighbor ap-
proximation in which the spins on sublattice 1 interact only with spins on sublattice 2.
Let

—

Ral -R (11)

A
pe

denote a nearest-neighbor vector. Then

Yot pg = Jﬁa,uilﬁg,ltA _ (12)



Therefore,

where J(0) = Jz,

is the structure factor, and z is the number of nearest neighbors.

tion becomes

SOOI

= J(k)ﬁa,u +1

[E+2<SE>J(O)J (k)— <s> B+2"< >J(0y(k

or

(13)

(14)

The equation of mo-

(u =g+1) (15)

[E ¥ K1<sz>] A () = %@Z‘} b * K2<Sz> Wk)A (k) (16)

where K1 = 2J(0) and K = 2J(0)n. For S =1/2 the sublattice magnetization can be

written as m = <Sl> <S 2>

Substitution into the equation of motion yields two pairs of simultaneous linear

equations,

One pair gives the Green functions
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and
A = m? K27(k).
nE e o e
E® - Ef
where
-1/2
E, = ml:K% - Kg-y(k)] (19)

is the excitation energy spectrum. The Green functions A22 and A12 are similarly
obtained but are not needed in the calculation of the thermodynamic quantities.
The corresponding correlation functions are

mK BE

Wll(l-{.) =m|-1+ 1 coth — X (20)
Ek 2
and
—- -msz'y(l_{.) BEk
wlz(k) = coth (21)
Ek 2

Transforming back to spin operators, we get

2mK BE
<sis’1'> =m/[-1+ 1 1 coth K (22)
N E, 2

k

and
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-2m?Kk 2 E
<s;s’£> RN K)o P (23)
N E E 2

k
k

The lattice sums appearing in equations (22) and (23) are taken over the first Brillouin
zone and can be evaluated analytically by the Flax-Raich method. The results are ex-
pressions for the correlation functions which are valid over the whole temperature range
up to the Néel temperature.

The series expansion

0

coth(nt) = L + 2 t (24)
7t 7 R2 + t2

R=1

is used where wt = gE, /2. For a cubic two-sublattice model
T L
2 -1 fff . . . dxdy dz
N 3 0 Y0 v0
T
k

The correlation functions can then be written as the sums of integrals:

<sis’{> = m(-1+1; + 1) (25)
and
<sis’2’> = -(I, + IL,) (26)

where the integrals 11, 12, and II2 are given in appendix B by equations (B1) to (B4).
When evaluated for the bece lattice, the integrals become

Qlnm

2
I, = l[ﬁ K(x)] @17)
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2 2 2
I, = - -1-<1+§) (1+§—->cothQ+§—chch2Q (28)

Q 8 16 16

2
m, = l:g-K(K)] -1 (29)
£Q |Lm
2
HZ - mé -.]:-(1 + 2—'75-) + <1 218 ) coth Q + 2787Q Q csch? Q (30)
8 Q 64 128 128
where
T = 1 (31)
pI(0)
Q=2 (32)
T

E=n (33)

K2=l(1- 1-n2> (34)
2

and K(x) is a complete elliptic integral of the first kind, For spin S = 1/2 the sub-
lattice magnetization is

m=@@=§-@pp (35)

Then

1

2(I1 +1

(36)
9)

The RPA sublattice magnetization m is plotted as a function of reduced temperature

9



7T = kT/J(0) in figure 1 for =0, 0.5, and 1. In the RPA, the correlation function
<SiS'2*> is not needed in the calculation of the sublattice magnetization but is used later

for the internal energy.

Callen Approximation

The Callen approximation is a symmetric decoupling scheme which attempts to take
into account the fluctuations of S% around its average value and was first proposed for
the ferromagnet (ref. 9) and subsequently applied to the antiferromagnet (refs. 3 and 10).
For the antiferromagnet,

Eresnr o)z Gl (Cori S - 2Eofe) BleiSom) @7

In the case of the ferromagnet, the empirical factor a is chosen to be <Sz> ﬁsz. For

the antiferromagnet, two choices for a are possible because of the existence of the two
sublattices, namely <Sf /282 and -<S§ /282. In the absence of an applied field both

choices lead to identical results. In the present calculation, we will use

Z
a =-M

Lg
252
Sz
__Sue
28

After decoupling and Fourier transforming to reciprocal space, the equation of motion is

EA k) = %(si) S - 2Aqg B(E)Z <sﬁ> T (O - é ZJau(Ev)wau(ﬁ) + ?<Sz>
L k'

X A1, (B - Lo Y5 (- v o8] G £ o) (58)
i Y

10



Applying the same nearest-neighbor approximation used in the RPA calculation gives

Yy _ 1 /azZ z 1 ™ gt o z g
EA oK) ‘;(Sa> 5, - 2(82)3O)|1 - .N_sz_zy(k Wy (KA (1) + 2<Sa>J(0)-y(k)
kl

< r =L A A (B = a2 D
NS e

where (ref. 6)

Z 3k - KN, (k) = J(OME)Z HENY, (k)
k' X'

By symmetry,

¥15(K) = ¥y, (k)
Let
K= 2J(0)(1 - 299F)
K, = 2J(0)(n - 2F)
where

2 I e
F= Ez wk )d/lz(k )
k'

and S =1/2. Then

<E + Ky <sﬁ>> AaB(f{) - %(si) Sup* K2<s:2>y(E)AuB(E)(p # a)

(39)

(40)

(41)

(42)

(43)

(44

(45)

11



The equation of motion for the Callen approximation has the same general form as for
the RPA and leads to a similar set of coupled equations for the Green functions. The
correlation functions are given by equations (20) and (21).

The difference is that for the Callen approximation K1 and K2 are defined by

equations (42) and (43), respectively. The second correlation function <‘SIS§> is iden-

tical to the sum F which appears in K1 and K2 and is given by equation (47). In the
same way as for the RPA, the correlation functions in the Callen approximation can be
written as the sums of integrals as in equations (25) and (26). The integrals have the
same form for both the RPA and Callen approximations and are given in appendix B by
equations (B1) to (B4). The results are given by equations (27) to (30) with K1 and K2
defined by equations (41) and (42). Also,

a-i- yi-e) (o

where
£ = E_i (47)
Q-= % (1 - 29F) (48)

and 7 is defined by equation (31). The sublattice magnetization m for the Callen ap-
proximation is plotted against 7 in figure 2 for n =0, 0.5, and 1. A comparison with
previous theoretical calculations (ref. 3) shows that for spin 1/2 the RPA gives a better
approximation of the sublattice magnetization.

INTERNAL ENERGY

The internal energy is a useful thermodynamic function for the calculation of many
other properties. For a system of interacting spins, differentiation with respect to tem-
perature gives the specific heat due to spin disorder. The entropy and other properties
may then be calculated. In previous studies of the antiferromagnet, the internal energy
has been derived only for very low temperatures or for the paramagnetic state above the
Néel temperature. In this section an exact expression is derived for the internal energy

12
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of a two-sublattice anisotropic Heisenberg antiferromagnet with spin S = 1/2. This ex-
pression for the internal energy is then evaluated in the random-phase and Callen ap-
proximations for the bcc lattice by means of the same method used for evaluating the
lattice sums in calculafing the magnetization. The result is an analytic expression for
the internal energy valid over the whole temperature range up to the Néel temperature.
The calculation is made for zero applied magnetic field, but the method is equally useful
for nonzero fields.

The internal energy U is obtained from the average value of the interacting spin
Hamiltonian:

U=(H) = ZZ I1t, 2¢ <<Sftsgg> *n <SItS§g>> (49)

i,g

The correlation function F = <S ESJZ“ has already been calculated, and

2 2 Ty, 2g<s iiS;g> = NJ(0)F (50)

f,g

The term 2 J <SZ zg> is calculated exactly for spin 1/2 i di d i
E , “1f, 2g 152 calculated € y pin 1/2 in appendix C and is
f,e

2
m-K BE
2 Jis 2g<sftsgg> - -NI(0) m + nF + —lm E, coth -k (C17)
? 2 J(0) 2
k

f,g

H

given by

An exact expression for the internal energy of the two-sublattice anisotropic Heisenberg
antiferromagnet for spin 1/2 is then

2

K E

voqy =- MOy e 21 0 B cotn Tk (51)
2 J(0) 2

where K1 is defined by equation (B5) or (B6). The sum ; E. coth(BEk/z) can be

13



evaluated with the help of the integrals of appendix B. Using equation (24) and convert-
ing from a sum to integrals give

(P4t P < e 9 -
BE 27
_m E, coth k. m_ , 2m 1 —_———— | dx dy dz
NJ(0) 2 pIO) pIO) 3 GE, \2
k R2+ __k_
0¥ 00 27
- R=1 -
m mZK1 sz
= + 12 -— I, (52)
BJI(0) 2J(0) 2J(0)

where I2 and 112 are given by equations (B2) and (B4), respectively, and K2 is de-
fined by equation (B5) or (B6). Substituting

and

into equation (51) and simplifying result in

BE mK mK,F
m E, coth k_ 1, 2 (53)
NJ(0) 2 43(0) 2J(0)

k

Defining a reduced energy by u = U/NJ(0) gives

_ mK K. F
u=-l(m-1]F)___1< -l)+m 2 (54)
2 2J(0) 2 2J(0)

Specifically,

14



Specifically,

u=-m?+qF (m + l) (RPA) (55)
2
and
u=-m?+ nF (Zm2 + -1-) - 2mF2 (Callen) (56)
2 .

The quantity u is plotted against the reduced temperature T in figures 3 and 4 for the
RPA and Callen approximations, respectively, for n =0, 0.5, and 1.

For both decoupling approximations and =0, u=0 at TC' This confirms the
persistence of some order even above TC due to the transverse coupling of spins. The
intersections of the curves for the RPA appear to result primarily from the lesser weight
given to the transverse coupling of spins. For the zero-field case it is not possible to
determine from u alone which decoupling scheme gives a more accurate description of
the internal energy. A calculation and comparison of the specific heats is more suitable
for this purpose.

Values of u at the Néel temperature are presented in table I. The ground-state
energy u, is the value of the internal energy at 0 K. These values are given in table II,
together with the values for the sublattice magnetization at 0 K. The ground-state energy
for the isotropic case (n = 1) in the Callen approximation agrees exactly with the value of
-0.293 obtained by Lee and Liu. They use a somewhat different and more complicated

method to evaluate the longitudinal correlation function <Si‘Sg> which appears in (H)
(ref. 3).

NEEL TEMPERATURE

The transition temperature for an antiferromagnet (Néel temperature) is defined as
that temperature at which the sublattice magnetization vanishes. With Q =Q'A and
Q' = m/7, the reduced Néel temperature Ty is determined from equations (2m, (28),
and (36) as

X 2 2 2 2
N "m0 oy [g K‘Kﬂ ] (1+£_)+ (“L)Q'A coth(@A) + - @a)2 csch?@a)}  (57)
2A 8 16 16

)

15



where A =1 for the random phase and 1 - 2nF for the Callen approximations. It is

easily shown that

im Ay coth (@A) = 1

QA0
(58)
lim (Q'A) csch (Q'A) =1
Q'A-0
Then
1 1i 1 (2 2
N o= o —[—K(K)] (59)
m-~0 2A (7
The calculation ™ for the Callen approximation also requires
lim
F. = F
N m-0
G &)
m-{
T 2
N 2
= —_— _K(I{ ) - 1 (60)
n - ZFN T N

Then equations (58) and (59) are used to determine ™"

The calculated values of ™ for =0, 0.5, and 1 are presented in table III. For
1 = 1, both the RPA and the Callen Néel temperature values agree exactly with those ob-
tained previously for the antiferromagnet (refs. 3 and 11). The value of ™ = 0.5 for
71 = 0 is the well-known value for the Ising model. It is noted that the reduced Néel tem-
peratures for the antiferromagnet are identical to the reduced Curie temperatures for the
ferromagnet for both the random-phase and Callen approximations.

CONCLUDING REMARKS

Our results for the sublattice magnetization and the Néel temperatures agree with
results obtained previously from high- and low-temperature expansions. This suggests

16



that the method for evaluating the lattice sums which was successfully applied to the
study of the anisotropic Heisenberg ferromagnet can be applied with equal validity to the
two-~sublattice anisotropic Heisenberg antiferromagnet. The result is an analytic ex-
pression for the sublattice magnetization that depends on the decoupling scheme. This
expression is valid over the whole temperature range. /

For spin 1/2, an exact expression for the internal energy due to the ordering of
spins (eq. (51)) has been derived for the two-sublattice antiferromagnet and is indepen-~
dent of any decoupling scheme or approximation. This expression was then evaluated
for the bece lattice using the Flax-Raich method, for both the RPA and Callen decoupling
schemes. The result is an analytic expression for the internal energy valid over the
whole temperature range. In the Callen approximation, the value of the ground-state
energy for the isotropic model (n = 1) agrees exactly with the value obtained previously
from a low-temperature expansion. The internal energy in the presence of an applied
field can be obtained by essentially the same methods. The analytic expression for the
internal energy can then be used to calculate the specific heat and many other thermody-
namic quantities and hence is a starting point for formulating the thermodynamics of the
two-sublattice antiferromagnet.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 8, 1971,
129-02.
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APPENDIX A

SYMBOLS

excitation energy
Hamiltonian

exchange energy

complete elliptic integral of first kind
Boltzmann's constant
sublattice magnetization
total number of lattice sites
spin operators

temperature

internal energy

1/kT

structure factor
nearest-neighbor vector
anisotropy parameter
reduced temperature
correlation function

Green function



EVALUATION OF INTEGRALS FOR BODY-CENTERED CUBIC LATTICE

. e

APPENDIX B

The method for evaluating the integrals which appear in the calculations of the cor-

relation functions in the random-phase and Callen approximations are outlined in this
appendix. The methods are similar to those applied to the ferromagnet (refs. 4 to 6).

omK T AT pl
11 = 1 1 dx dy dz
0 JO0JO k

The integrals are

n

mgK
I, = 1
5
i
00 0
2m2K
_ 2
II, =
1 3
gm

112 =

where

T AT T
2
K
mBz __y_z_ﬁ__dxdydz
5 2
i E
R2+ E..E)
27
0V 0

1

2
BE
2
R=1

I i i 2
y
&) 4x dy dz
2
0J0Y0 k

dx dy dz

L R-1 .

(B1)

(B2)

(B3)

(B4)
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K, = 2J(0)

(RPA) (B5)
K2 = 27J(0)

K1 = 2J(0)(1 ~ 27F)
' (Callen) (B6)
K2 = 2J(0)(n - 2F)

and

E2 = m? [KZ - 'yz(l—;)Kg]

k 1
(BT)
- mzKi‘ [1 - Ezyz(k)J
with £ = K2/K1. For the becce lattice, the structure factor is
'y(l-«{) = COS X COS ¥ COS Z (B8)
Then
T pTPpT
11 -2 1 )dx dy dz
BmKIHB o Jo Jo 1- 52 cos2 X cos2 y cos2 z
T PT
2 - 1 T, Gy dz (B9)
BmKl” 0J0 (1 - £2 c052 X cos2 y)
The denominator can be expanded as
/ 0
1/2
1 - 52 cos? x cos? y) = E an£2n cos®™ x cos?™ y (B10)
n=0

20




R

;:'where

__(2n):
22n(n'. )2

Also,
g
2n _
_/(; cos“"x dx = a,m

Therefore,

o0

I, = 2 E a?ngn
BmK1

n=0

The series corresponds to a complete elliptic integral of the first kind (ref. 4):

o0

2
Kz(Kl) =.7;_ E ag(2l<_11c'1)2n

n=0

where

The integral II1 can be written in terms of I1 as

m=m( -._2

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)
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and is thereby easily evaluated. The evaluation of I2 proceeds as follows:

o0

(s m T
L = 4 111 dx dy dz ( )
2 "ol q : B18
MK 21 3 2
1 L L 1- £ coszxcoszycoszz
0V v( r

R=1
where
2
r2-[ 2"} .4 (B19)
BmKl
Then
[~.e]
4 112 2
12 = -—[—-K(Kz)] (B20)
[3mK1 r2lm
R=1
where
2
2 1 £
Kg ==|1 - 1-(= (B21

Using the same expansion as in the evaluation of Il’

o0

3 2 _ 3 i2n
I:TT.K(Kz)} Zan <I‘>

n=0

2 4
> +37—(’5—) ... (B22)

=1+l(£_
8\I' 512\I"
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" gives

o0

: 2 4
'f/‘f»(; 12=__4_. _L+-§—+£-7‘E—+. .. (B23)
pmK,y r?2 sr? s12r®

Substituting 1/T% = 82/(R® + 8%), where S = gmK, /27, gives

o0

o0 o0
2.4 6
I, = 2 |s? 1 )\, &8 1 2+2754S 1 =+ .| (B29)
S E \g2,q2/ 8 ; (@2 +sh? 512 2 (82 + 82)
R-1

The sums over R are evaluated by the method of Laplace transforms (see refs. 4 to 6
and references cited therein). Sufficiently accurate results are obtained by keeping only
the first few terms in the sum over n. Specifically, the sums over R needed to calcu-
late 12 and II2 are

[>e]
1 =1 I eoth (7S) (B25)
z \, R% ;52 52
R=1
= 2
1 ==L v I om (7S) + BRI csch? (78) (B26)
2 2,2 4 3 2
(R® + 89 2S 48 48
R=1
Finally,
2 2 2
I=-1(1+ 3 + (1 + -€—> coth (7S) + £~ (@S) csch2 (nS) (B27)
2 18 8 16 16

The integral H2 is evaluated in a similar way. For the RPA, 7S =m/7 and £ = n. For
the Callen approximation, 78 = m(1 - 29F)/7 and & = (n - 2F)/(1 - 27F).
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APPENDIX C

EVALUATION OF THE TERM. 2, J¢ g (5%S%)
fg

For spin 1/2, the term 2 E J 1f, 2g<sffsgg> can be evaluated exactly. The oper-

f,g
ator SZ can be written as

1 -t
z==-8.8
S g2 U1
(C1)
1 -+
Z==-==8.5
s2= -3 ~52%2
Then
zgz\ _ 1 1 [/fo=qa+ - ot —ata- ot \ _ 1 - ot
<Slf82g> =Tty <<Sltslf> - <S2gszg>> + B1P152555) = 2t QT
* <SlislfSZgSZg> (C2)

since

E585) = -¢1)

. . -at a- ot . ,
The correlation function <S 1131152 gsz g> can be evaluated by using the Green function

equation of motion given by equation (2) for «,8 = 1:
A1, 1m = —<S1z> 0 2 : 11,28 [<<82g L 1m>> < 11555 1rr>>] (C3)

Substituting equations (C1) on the right side for S% gives

24



= _1 /fz
“EA17 1m —;<S1z> S m* z :JIZ,Zg(All,1m+ Mog 1m) *+ 2 2 :Jll,2g
. g ' g

_nA

X (Age9017,1m ~ ™17112¢, 1m) (C4)

where A2 g2g1l ,1m = <<SzgS'§ gs;.-l ; im>> is a Green function of higher order.

To simplify the calculation, the spectral density p for a Green function is intro-
duced. It is defined in reference 7 by

p(A,B;E) = 1 im [«A B>>E+1€ <<A B>>E 1e] (C5)

The corresponding correlation functions are calculated from equation (5). For t=1t'
equation (5) can be written as

0 -1
(BA) =/ (eBE - 1) p(A, B;E)dE (C6)

=00

Equation (C4) can be written in terms of spectral densities. Setting 1 = m =f results in

Ep(1f,1f; E) = E Jlf,2g[p(1f’ 1f; E) +'r)p(2g,1f',E)] + 2 E Jlf,Zg
g

g
X [p(2g2g1f,1f',E) - np(1f1f2g,1f-,E)] (%)
where
p(1f,1£,E) = ! hm\:Alf 1f(E+ i€) - Alf’ 14(E - ie):| (C8)
-0 ’
ey _ i lim N .
p(2g2g1L, 1L E) = ° [A2g2g1f,1f(E +1€) - Agooots, 15(E - 16)] (C9)
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- ST

T e
B ==

Multiplying equation (CT) by (eBE - 1)-1, integrating over E from -» to +», and

summing over f give

Z /w(eﬁE - 1)'1Ep(1f, 1f; E)dE = ZJlf,2g ((Sifs-{f> + n<SiiS§g>) + 2ZJ1f,2g
o f.,g

i,g

i <<Sif95g55gs{f> - néiﬁitshszg) (€10)

On the right side, <SEISIISLS§g> = 0, because for S = 1/2, (S')2 [> = 0 for any state f> .

Fourier transforming p(1f, 1f; E) to reciprocal space yields

Z p(lf,lf',E) = Z pll(k,E)
f k
- E 111m[A11(k;E+ ie) - Ay (; E- ie)] (C11)
-0
k

Rearranging equation (C10) gives

- - ® BE -1 -
2 E Jlf’2g<s1fs‘{ts2gs*2’g> = E / eB® _ 1) Ep,4(k; E)AE - § It 2
k =00

f,g i,g

* ((Siﬁh) . n<Sifs§g>> €12

Then from equations (C2) and (C12),

ZZ J1f,2g<sizxs§g> = -Ni(o) ¥ ZJlf,zg <<sits’{f> - n(s;tsgg» +Z [:(eBE -y
K

f,g f’g

X Ep, ;(k; E)AE (C13)

26



"y

Also,

NJO
E 1t 2g< 1S = <Slsl>
f,g
- _N_J@(l - m> (C14)
2 \2

and

- NJ(0)F
Z Iit, 2g<slfsgg> = ‘_""(2 ) (C15)

f,g

The integral over E is evaluated by using the Green function of equation (17) in the
spectral density pll(k;E). The result is

[ o]
- B 2
E pE 1 g _ BEr  Nm
e -1 E k; E)YdAE = m E, coth — - —_——_K C16
[w( ) P11( y ) k 9 2 1 ( )
k k

Substituting equations (C14), (C15), and (C16) into (C13) gives
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TABLE I. - REDUCED INTERNAL ENERGY EVALUATED

AT NEEL TEMPERATURE FOR SPIN 1/2 ANTI-

FERROMAGNET WITH BODY-CENTERED

CUBIC LATTICE

Anisotropy Approximation
factor,
n Random phase Callen
Reduced internal energy, u = (H) /NJ(0)
0 0 0
.5 -.0043 -.0097
1.0 -.0706 -.0706

TABLE II. - REDUCED INTERNAL ENERGY AND SUBLATTICE MAGNETIZATION

EVALUATED AT T = 0 K FOR SPIN 1/2 ANTIFERROMAGNET

WITH BODY-CENTERED CUBIC LATTICE

Anisotropy Approximation
factor, T
n Random phase Callen
Sublattice Reduced internal Sublattice Reduced internal
magnetization, energy, magnetization, energy,
m, u, = (H) /NJ(0) m U, = (H) /NJ(0)

0 0.5000 -0. 2500 0. 5000 -0. 2500
.5 . 4293 ~. 2584 . 4907 -.2597
1.0 . 4706 -.2906 . 4706 -.2934
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TABLE II. - REDUCED NEEL TEMPERATURE

FOR SPIN 1/2, TWO-SUBLATTICE, ANISO-

TROPIC HEISENBERG ANTIFERROMAGNET

WITH BODY-CENTERED CUBIC LATTICE

ATt R i~

Anisotropy Approximation
factor,
n Random phase | Callen

Reduced Néel temperature

0 0.5000 0.5000
.5 .4830 .4970
1 .3589 .4601

Magnetization, m

\
{
1
— \ \
|
\
|

———————— ——

Anisotropk
factor,
n \
—_ 0
2 e 5 \

N
0 .1 2 .3 .4
Reduced temperature, T = KT/ 3(0)

Figure 1. - Magnetization as function of reduced
temperature for random-phase approximation.
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Magnetization, m

(H}INS(0)

Internal energy, u

. Anisotropy
- factor, \

\

1

‘|
I | | L1

.1 .2 .3 .4 .5
Reduced temperature, T = kT/J(0)

Figure 2. - Magnetization as function of reduced temperature for

Callen approximation.
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Figure 3. - Internal energy as function of reduced
temperature for random-phase approximation.
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Internal energy, u= (H)/NJO}

-.32

-.28

-.24
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—
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| Anisotropy
factor,
n
0
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" Reduced témperature; T = KI30)

Figure 4. -Internal energy as function of reduced
temperature for Callen approximation.
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